

PCAN-driver for Linux

Copyright (C) 2002 -2007 Peak System-Technik GmbH

www.peak-system.com

linux@peak-system.com

and Klaus Hitschler

klaus.hitschler@gmx.de

PCAN-driver for Linux page 1 of 29

http://www.peak-system.com/
mailto:klaus.hitschler@gmx.de
mailto:linux@peak-system.com

History of the document

First draft Hi 13.01.2002
Rescue after loss of data Hi 10.02.2002
Format revision, read/write tables Hi 20.02.2002
Removed typos Hi 21.02.2002
PCAN-USB integrated Hi 09.02.2003
Obfuscation of „pcan_usb_kernel.c“ is described Hi 23.02.2003
devfs, kernel-2.5 support, LGPL Hi 04.08.2003
1st revision for kernel 2.6.x driver Hi 02.05.2004
Enlarge FAQ, corrections Hi 13.05.2004
Simple correction for RPM make procedure Hi 14.08.2004
Additional compiler switches Hi 19.07.2005
Replaced cat “i ...” with echo “i ...” Hi 30.11.2005
Added a hint from Uwe Bonnes Hi 14.03.2006
Added PCAN-PC Card support, removed devfs Hi 14.05.2006
Corrected serious typographic error Hi 16.05.2006
Removed obfuscation, added realtime support Hi 29.10.2006
Minor improvements Hi 04.11.2006
netdev, message filters and error handling described Hi 27.02.2007

PCAN-driver for Linux page 2 of 29

table of documents
PCAN-driver for Linux..1

History of the document...2
Features of the 'pcan.o' or 'pcan.ko' driver..4

Special features of the “chardev driver”...4
Special features of the “netdev driver”...5

Preluding notes..5
Manual installation ..6

Manual file unpacking ...6
Prerequisites for compilation of the sources..7
Manual compilation and installation ..7

Installation with source RPM..7
Loading the driver ...8

Driver loading specifics for chardev...9
Driver loading specifics for netdev...10

Interface Specifics..12
Specifics with the driver installation for PCAN-USB ...12
Specifics with the driver installation for PCAN-PC Card..12

Customization of 'modules.conf' or 'modprobe.conf'..13
Interface hardware type...13
IO-port and interrupt settings...13
Initial bitrate...14
Assign parameter (netdev only)...14

Installation test, use of test programs (chardev only)..14
Most important chardev header files..16

Manual installation of the chardev header-files...16
Most important netdev header files..17
Compilation of the driver only..17

Use cases ...17
Support for Cross-Compilation..18

Features of the shared library 'libpcan.so' (chardev only)...19
Manual installation of the chardev shared library..19
Message Filters (chardev only)..19
Error handling..20
Socket-CAN introduction and basic installation (netdev only).......................................20
Realtime support with Xenomai...22

Installation...22
Compilation environment...22
Runtime environment...22
Troubleshooting...22

FAQ..23
Appendix..26
Historical parts...28

devfs..28
Compilation for kernel greater than 2.5.x..28
Obfuscation..29

Epilogue ..29

PCAN-driver for Linux page 3 of 29

Disclaimer

Part of this program is free software; you can redistribute it and/or modify it under the
terms of the GNU General Public License or LGPL Lesser General Public License as
published by the Free Software Foundation version 2 of the License. This program is
distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA

It is strictly prohibited to use the intellectual property from the provided source
code for developing or producing a 'compatible' hardware. All rights are reserved
by Peak-System-Technik GmbH.

Features of the 'pcan.o' or 'pcan.ko' driver

The „pcan.o“ or „pcan.ko“ driver is supporting PCAN-PCI, PCAN-ISA, PCAN-PC/104,
PCAN-Dongle, PCAN-PCCARD as well as PCAN-USB hardware. Depending on the type
of hardware (PCI, ISA, Dongle, PC Card, USB) 8 channels for each type can be
supported. For PCAN-ISA, PCAN-PC/104 and PCAN-Dongle the base address and the
used interrupt are settable. If no parameters are provided the driver uses factory defaults.
A user program can communicate with the driver in three different ways:

1. ASCII formatted data can be provided or accepted over a „read()“ or „write()“ interface.
This data contains information from received or transmitted telegrams or about channel
initializing parameters.

2. With a „ioctl()“ interface. Through this interface user programs are able to receive and
to transmit CAN-telegrams as well. However it is possible to get information about the
channel status and to initialize the CAN-channel.

3. As a network device with commonly used network socket calls. This kind of interface is
alternative to the previous kinds. It is called the netdev drivers interface, in contrast to
the chardev drivers interface. To use the netdev drivers interface you have to install the
Socket-CAN support from socketcan.berlios.de .

Most of this manuals content covers the usage of the chardev driver, see chapter
“Special features of the chardev driver”. The netdev driver usage and installation is
considered in depth in the chapter “Special features of the netdev driver”. Parts of the
following chapters are different for chardev or netdev implementations. Exceptions are
marked to pinpoint the difference.

Since version 5.0 of the driver support for the XENOMAI realtime add-on to the Linux
kernel is available. You can get more information in the chapter “Realtime support with
Xenomai”.

Special features of the “chardev driver”

The driver can be used from more than one user program at the same time and the
simultaneous use of lots of interfaces and/or CAN channels is supported.

The reading or writing of telegrams can block if the receive buffer doesn't contain data

PCAN-driver for Linux page 4 of 29

any more or if the write buffer is full. This behaviour can be disabled by opening the path
as non-blocking.

If more than one user program communicates with the same CAN-channel the input or
output is shared. (e.g.: Many user programs are accidentally sharing the received
telegrams.)

The „select“-method is supported.

The interface to the driver (constants and structures) is defined in the header file „pcan.h“.

Special features of the “netdev driver”

The netdev driver interfaces to the kernels network modules via a so called Socket-CAN
framework. Socket-CAN aims to be a standard interface for access of CAN devices. This
kind of interface enhances the features compared to the chardev driver. Especially it
provides:

● Possibility for multiple paths reading/writing from/to the same CAN channel
● Built-in filter capabilities, e.g CAN-ID (range) filters with can-raw sockets
● Built-in broadcast manager for cyclic sending of CAN telegrams and content

filtering in the CAN-data, e.g. updates to userspace only on data change
● Simple user API accessible from mostly all programming languages since normal

network socket calls are used (creating PF_CAN analogue to PF_INET)
● Local loopback of sent CAN frames for network transparent applications
● Socket-CAN is accompanied from lots of useful tools and utilities

The interface to the driver (constants and structures) is defined in the header file “can.h”
and "error.h" as long as Socket-CAN is not part of the mainstream Linux kernel.

Preluding notes

Note: Before installing the software the hardware has to be installed in or at the computer
(Exception: PCAN-Dongle, PCAN-PC Card or PCAN-USB, see at (6*)).

This manual is describing the installation process on a x86-Linux-computer with installed
kernel 2.6.x. and a SuSE 10.1 system. Exceptions for kernel 2.4.x. and x86-RedHat
systems are particularly mentioned.

Since driver version 6.0 support for kernels 2.2.x has ceased. If you need a driver for this
kernels please have a look at the latest 5.x driver version.

During the installation sometimes a console and perhaps an editor as well will be used in
the „root“- mode. If you want to login as „root“ user within a console or xterm-session you
can use the 'su' command or the built in menu „file/root console“.

To start an editor in the „root“ – mode, just invoke from the menu
„system/terminals/terminal (system manager mode)“ in KDE. From the console command
line you might invoke the editor „kwrite“, „kate“ or „emacs“.

For some distributions the standard path doesn't include the „/sbin“ folder. Then
installation commands have to typed in with „/sbin/“ ahead.

Examples:
/sbin/modprobe ... instead of modprobe ...
/sbin/insmod ... instead of insmod ...
/sbin/rmmod ... instead of rmmod ...
/sbin/modinfo ... instead of modinfo ...

PCAN-driver for Linux page 5 of 29

Manual installation

Manual file unpacking

Unpack the file „peak-linux-driver.x.y.tar.gz“ into an optional folder into your home
directory. Example:

tar -xzf peak-linux-driver.x.y.tar.gz

Within this directory you get following tree of files:
peak-linux-driver-x.y/
|-- Documentation Any documentary
| |-- COPYING GNU Public License
| |-- Installation-en.pdf This installation instructions
| |-- template.c
| |-- template.h
| |-- template.make
| `-- todo.txt
|-- Makefile A ‘global’ makefile
|-- driver The driver and its sources
| |-- Makefile The makefile for the driver
| |-- pcan.h Application interface definitions of the driver
| |-- pcan_make_devices A script for generating device nodes
| |-- src The driver sources
| | |-- can.h
| | |-- error.h
| | |-- pcan_common.h
| | |-- pcan_dongle.c
| | |-- pcan_dongle.h
| | |-- pcan_fifo.c
| | |-- pcan_fifo.h
| | |-- pcan_filter.c
| | |-- pcan_filter.h
| | |-- pcan_fops.c
| | |-- pcan_fops.h
| | |-- pcan_isa.c
| | |-- pcan_isa.h
| | |-- pcan_main.c
| | |-- pcan_main.h
| | |-- pcan_netdev.c
| | |-- pcan_netdev.h
| | |-- pcan_parse.c
| | |-- pcan_parse.h
| | |-- pcan_pccard.c
| | |-- pcan_pccard.h
| | |-- pcan_pccard-2.6.16.c
| | |-- pcan_pccard-2.6.17.c
| | |-- pcan_pccard-kernel.c
| | |-- pcan_pccard-kernel.h
| | |-- pcan_pci.c
| | |-- pcan_pci.h
| | |-- pcan_sja1000.c
| | |-- pcan_sja1000.h
| | |-- pcan_usb.c
| | |-- pcan_usb.h
| | |-- pcan_usb_kernel.c
| | `-- pcan_usb_kernel.h
| |-- test.txt
| `-- wstress
|-- lib The access library for (chardev)
| |-- Makefile The makefile of the library (chardev)
| |-- libpcan.h The library call prototypes (chardev)
| `-- src The sources of the library (chardev)
| `-- libpcan.c
`-- test The test programs
|-- Makefile The makefile to the test programs
|-- src The sources to the test programs
| |-- bitratetest.c To test bitrate calculations (chardev)
| |-- common.c
| |-- common.h
| |-- filtertest.cpp To test filter settings (chardev)

PCAN-driver for Linux page 6 of 29

| |-- parser.cpp
| |-- parser.h
| |-- receivetest.c To receive test (chardev)
| `-- transmitest.cpp To transmit test (chardev)

`-- transmit.txt Test transmit instructions

Prerequisites for compilation of the sources

Before compiling following prerequisites have to be considered:

1. Up from kernel version 2.6.x the completely configured kernel sources for your target
system have to be installed. If it is a standard installation the sources are located under
„/usr/src/linux“ in which this normally is a link e.g. to „/usr/src/linux-2.6.6“. For every
kernel smaller or equal than 2.4.x only the „kernel-headers“ have to be installed. (It's
not wrong to install the complete sources of the target system.) The kernel-headers are
installed if the invocation of “cat /lib/modules/'uname
-r'/build/include/linux/modversions.h“ is ending without an error. (“'uname -r'“ is a place
holder for the result of the invocation “uname -r“.)

2. The “/lib/modules/'uname -r'/build/include/linux/version.h“ file has to exist or being
copied before from the path “/boot/vmlinuz.version.h“.

3. Tools like make, gcc, etc. have to be installed.

4. Your target kernel must have the proc-filesystem enabled. Dependent of your CAN
interface hardware PCI, USB and/or PCCARD support must be enabled with your
target kernel configuration.

Manual compilation and installation

A semi-automatic installation with compilation can also be done with little effort. Unpack
the tar.gz-files to any directory and start compilation and installation. Please note the
prerequisites for compilation of the sources.

As default the driver and its utilities are compiled for chardev usage with support for all
hardware interfaces from PEAK. If you need to customize the driver or switch to netdev
usage please look at the chapter “Compilation of the driver only”.
cd peak-linux-driver-x.y
make clean
make
su -c “make install”

Installation itself needs to be root.

After building the sources and the following binary installation on your target computer it's
enough to type in

/sbin/modprobe pcan

to install the driver and any other useful modules. Depending on your requirements you
have to do this procedure every time you start your computer or your application. (This
may be done in a startup script, too.)

Installation with source RPM

The installation comprise 2 files:

Installation-en.pdf
peak-linux-driver-yyyymmdd-x.y.src.rpm

PCAN-driver for Linux page 7 of 29

this installation manual and a source RPM file as base for making a binary RPM file for
your target platform.

Note: The term for release or the version for file names can change.

The installation with RPM creates an installable RPM – package with standard settings for
the local target system. If the standard settings don't fit you can do a manual installation.

Please type in the command line (as „root“ user):
rpm --rebuild peak-linux-driver-20040501-3.3.src.rpm

or
rpmbuild --rebuild peak-linux-driver-20040501-3.3.src.rpm

if the file „peak-linux-driver-20040501-3.3.src.rpm“ is in your current directory.

This invocation expects the previous installation of the gcc-compiler, the kernel-headers
and the make tools. Please consider the chapter “Prerequisites for compilation of the
sources”.

The compilation for systems with kernel 2.6.x needs an additionally configured kernel and
all of the kernel sources.

Depending on your distribution the binary RPM file is stored at „/usr/src/packages/“ or
„/usr/src/redhat“.

To do a system specific binary-installation change into this folder and invoke:
rpm --install peak-linux-driver-20040501-3.3.i386.rpm

Alternatively you can use the GUI based installers „kpackage“ in KDE or „gnorpm“ in
GNOME, too.

Loading the driver

Note: Up from the kernel version 2.6.0 the kernel module extension is „ko“.

Register as „root“ user in a console e.g. konsole or xterm. Fork to the „.../peak-linux-
driver-x.y/driver“ directory. Type in:
/sbin/modprobe parport

This command installs the „Parport Subsystem“ with Linux. It is necessary to support the
PCAN-Dongle integration (1*, 2*). If the command exits without an error message please
invoke
/sbin/insmod pcan.o type=xxx,yyy,... io=0x300,0x378,... irq=10,7,...

or from kernel 2.6.0 on:
/sbin/insmod pcan.ko type=xxx,yyy,... io=0x300,0x378,... irq=10,7,...

If you need USB support you have to do the same steps as in „Specifics with the driver
installation for USB-PCAN“. The place holder „xxx,yyy,...“ are standing for „isa“, “sp“ or
„epp“. The parameter for „io“ and „irq“ can be left out, if the standard assignments are
configured with your hardware. PCI-channels, USB-channels and PCCARD based
channels are found and installed without any special details but ISA (PC/104) and
parallel-port supported channels have to be registered.

The standard assignments for ISA and PC/104 interfaces are (io/irq): 0x300/10, 0x320/5

PCAN-driver for Linux page 8 of 29

The standard assignments for Dongle in SP/EPP mode are (io/irq): 0x378/7, 0x278/5

Driver loading specifics for chardev

With the following command you can see any error report after “insmod-ing” (as „root“
user):
tail /var/log/messages

Normally the output looks similar to this (depending on your hardware interfaces and your
configuration settings):
Mar 6 17:35:26 sheila kernel: pcan: Release_20070221_n
Mar 6 17:35:26 sheila kernel: pcan: driver config [mod] [isa] [pci] [dng] [usb] [pcc]
Mar 6 17:35:26 sheila kernel: pcan: pci device minor 0 found
Mar 6 17:35:26 sheila kernel: pcan: pci device minor 1 found
Mar 6 17:35:26 sheila kernel: pcan: usb hardware revision = 28
Mar 6 17:35:28 sheila kernel: pcan: usb device minor 32 found
Mar 6 17:35:28 sheila kernel: pcan: PEAK PC_CAN_CARD 001 A1
Mar 6 17:35:28 sheila kernel: pcan: pccard device minor 40 found
Mar 6 17:35:28 sheila kernel: pcan: pccard device minor 41 found
Mar 6 17:35:28 sheila kernel: pcan: pccard firmware 1.5
Mar 6 17:35:28 sheila kernel: pcan: major 253.

To check the correct installation of the driver please invoke:
cat /proc/pcan

You'll get a similar printout if there are no errors:
*------------ PEAK-Systems CAN interfaces (www.peak-system.com) -------------
*-------------------------- Release_20070221_n ----------------------------
*------------------- [mod] [isa] [pci] [dng] [usb] [pcc] --------------------
*--------------------- 8 interfaces @ major 253 found -----------------------
*n -type- ndev --base-- irq --btr- --read-- --write- --irqs-- -errors- status
 0 pci -NA- ec00b000 010 0x001c 00000000 00000000 00000000 00000000 0x0000
 8 isa -NA- 00000300 010 0x001c 00000000 00000000 00000000 00000000 0x0000
 9 isa -NA- 00000320 010 0x001c 00000000 00000000 00000000 00000000 0x0000
16 sp -NA- 00000378 007 0x001c 00000000 00000000 00000000 00000000 0x0000
32 usb -NA- ffffffff 255 0x001c 00000000 00000000 00000000 00000000 0x0000
33 usb -NA- 20003412 033 0x001c 00000000 00000000 00000000 00000000 0x0000
40 pccard -NA- 00000400 005 0x001c 00000000 00000000 00000000 00000000 0x0000
41 pccard -NA- 00000420 005 0x001c 00000000 00000000 00000000 00000000 0x0000

As default the driver is configured for the dynamic allocation of the „major“ number (4*).
This is why the device files have to be generated newly every time after driver installation.
Please invoke the shell script for this:
./pcan_make_devices 2

This script installs two device files for each PCI, ISA, PCCARD, Dongle Devices in SP
and EPP mode (3*) and USB-devices. Please verify the result with the command:
ls -l /dev/pcan*

Now you already can do your first test with your CAN hardware. Just connect a CAN-
transmitter to your CAN interface and send telegrams with bit rate setting of 500 kbit/sec .
Login at a user-console and invoke:

● cat /dev/pcan0 for the first PCAN-PCI interface
● cat /dev/pcan8 for the first PCAN-ISA or PCAN-PC/104 interface
● cat /dev/pcan16 for the first PCAN-Dongle interface in SP-mode
● cat /dev/pcan24 for the first PCAN-Dongle interface in EPP-mode
● cat /dev/pcan32 for the first PCAN-USB interface (*9)

PCAN-driver for Linux page 9 of 29

● cat /dev/pcan40 for the first PCAN-PC Card interface

The received telegrams should be shown (5*). This invocation can be made at more than
one console for more than one interface at the same time.

Output of data is already possible. With the call of:
echo „m s 0x234 2 0x11 0x22“ > /dev/pcan0

for example a CAN telegram with standard frame is transmitted with the identifier 0x234
and two data bytes „0x11“ and „0x22“ from the first PCAN-PCI interface. The bit rate of
the interface can as well be set from the so called „write interface“.

Driver loading specifics for netdev

With the following command you can see any error report after “insmoding” (as „root“
user):
tail /var/log/messages

Normally the output looks similar to this (depending on your hardware interfaces and your
configuration settings):
Mar 6 17:39:51 sheila kernel: pcan: Release_20070221_n
Mar 6 17:39:51 sheila kernel: pcan: driver config [mod] [isa] [pci] [dng] [usb] [pcc] [net]
Mar 6 17:39:51 sheila kernel: pcan: pci device minor 0 found
Mar 6 17:39:51 sheila kernel: pcan: pci device minor 1 found
Mar 6 17:39:51 sheila kernel: pcan: usb hardware revision = 28
Mar 6 17:39:53 sheila kernel: pcan: registered netdevice can0 for pcan usb hw (minor 32)
Mar 6 17:39:53 sheila kernel: pcan: usb device minor 32 found
Mar 6 17:39:53 sheila kernel: usbcore: registered new driver pcan
Mar 6 17:39:53 sheila kernel: pcan: PEAK PC_CAN_CARD 001 A1
Mar 6 17:39:53 sheila kernel: pcan: pccard device minor 40 found
Mar 6 17:39:53 sheila kernel: pcan: registered netdevice can1 for pcan pccard hw (minor 40)
Mar 6 17:39:53 sheila kernel: pcan: pccard device minor 41 found
Mar 6 17:39:53 sheila kernel: pcan: registered netdevice can2 for pcan pccard hw (minor 41)
Mar 6 17:39:53 sheila kernel: pcan: pccard firmware 1.5
Mar 6 17:39:53 sheila kernel: pcan: registered netdevice can3 for pcan pci hw (minor 0)
Mar 6 17:39:53 sheila kernel: pcan: registered netdevice can4 for pcan pci hw (minor 1)
Mar 6 17:39:53 sheila kernel: pcan: major 253.

After insmod you have to bring your network devices up, for example:
ifconfig can0 up

Depending on the configuration of your system (hotplugging, etc.) you might get a log
entry like:
Mar 6 17:39:53 sheila ifup: can0
Mar 6 17:39:53 sheila ifup: No configuration found for can0

as the CAN network device is currently not recognized and handled by these 'hotplugging'
scripts. It's save to ignore these kind of log messages.

Before 'modprobing' the netdev prepared modules you should edit your
/etc/modprobe.conf (or /etc/modprobe.conf.local or /etc/modules.conf, depending on your
kernel version and distribution) and add at least this lines:
protocol family PF_CAN
alias net-pf-29 can

protocols in PF_CAN
alias can-proto-1 can-raw

PCAN-driver for Linux page 10 of 29

alias can-proto-2 can-bcm

protocol module options
#option can-tpgen printstats=1
#option can stats_timer=0

virtual CAN devices
alias vcan0 vcan
alias vcan1 vcan
alias vcan2 vcan
alias vcan3 vcan

CAN hardware (uncomment the currently used)

#> Peak System hardware (ISA/PCI/Parallelport Dongle, USB, PC Card)
#> to set initial BTR-values set and hardware dependent settings
alias can0 pcan
alias can1 pcan
alias can2 pcan
alias can3 pcan
#options pcan assign=peak
#options pcan type=isa,isa io=0x2C0,0x320 irq=10,5 btr=0x4914
#options pcan type=epp btr=0x4914
#options parport_pc io=0x378 irq=7

Depending on the desired target hardware interfaces and transport protocols you may
need more entries. Please look into the Socket-CAN documentation for more information.

With the special 'assign=peak' module load parameter you can assign the network device
names of the CAN channels corresponding to the assigned minor numbers, e.g. network
device name “can40” corresponds devices minor number 40.

If you omit this parameter the network device names are automatically assigned in
channel initialization order.

A third option allows to assign individual network device names. To accomplish it please
add a string similar to this:
assign=pcan32:can1,pcan41:can2

Please note: With kernels 2.4.x you should use a plus (+) instead a comma (,) to separate
the entries.

To check the correct installation of the driver please invoke:
cat /proc/pcan

You'll get a similar printout if there are no errors:

*------------ PEAK-Systems CAN interfaces (www.peak-system.com) -------------
*-------------------------- Release_20070221_n ----------------------------
*---------------- [mod] [isa] [pci] [dng] [usb] [pcc] [net] -----------------
*--------------------- 6 interfaces @ major 253 found -----------------------
*n -type- ndev --base-- irq --btr- --read-- --write- --irqs-- -errors- status
 0 pci can2 f7d00000 209 0x001c 00000000 00000000 00000000 00000000 0x0000
 1 pci can3 f7d00400 209 0x001c 00000000 00000000 00000000 00000000 0x0000
32 usb can0 00000000 033 0x001c 00000000 00000000 000000a6 00000000 0x0000
33 usb can1 00000000 255 0x001c 00000000 00000000 00000000 00000000 0x0000
40 pccard can4 00000180 169 0x001c 00000000 00000000 00000000 00000000 0x0000
41 pccard can5 000001a0 169 0x001c 00000000 00000000 00000000 00000000 0x0000

The 'ndev' column shows the network device assignment. For assignment of bit rates to
network devices you can either set the desired bit rate as module load parameter or you
can assign the bitrate after loading the driver with a simple command line invocation like:
echo "i 0x4914 e" > /dev/pcan0

PCAN-driver for Linux page 11 of 29

For this reason it is important to create the chardev-device-entries with the script
./pcan_create_devices 2

even if only the netdev driver ist used.

To test the correct installation of the netdev driver you can use the Socket-CAN utility
“candump”.

$ candump
Usage: candump [can-interfaces]
 (use CTRL-C to terminate candump)
Options: -m <mask> (default 0x00000000)
 -v <value> (default 0x00000000)
 -i <0|1> (inv_filter)
 -e <emask> (mask for error frames)
 -t <type> (timestamp: Absolute/Delta/Zero)
 -c (color mode)
 -a (enable additional ASCII output)
 -s <level> (silent mode - 1: animation 2: nothing)
 -b <can> (bridge mode - send received frames to <can>)
 -l (log CAN-frames into file)
 -L (use log file format on stdout)

To receive from any CAN netdevice you might also invoke
candump any

instead of working with specific CAN netdevices:
candump can0 can2

Interface Specifics

Specifics with the driver installation for PCAN-USB

For using the driver the USB subsystem of the Linux kernel has to be enabled. USB
support for Linux was first introduced with kernel 2.4. The use of PCAN-USB together
with a Linux kernel version less than 2.4.7 is deprecated through the driver developer.

Specifics with the driver installation for PCAN-PC Card

The user side of the PCMCIA subsystem of the kernel has undergone heavy changes
through subsequent releases of kernel 2.6.x . So we have to distinguish between the
implementations:

Up from kernel 2.6.13 the vendor and card IDs are not any more registered in the
configuration file “/etc/pcmia/config” since the relationship between manufacturer-ID and
device-ID of the card and the associated driver is registered inside the driver. The driver
should be loaded before card plugin.

With this kernel versions you can use the pccardctl utility from the pcmcia-package,
especially “pccardctl eject” and “pccardctl insert” to prepare a card for ejection or to notify
a inserted card. The former utility to do the same was called cardctl.

PCAN-driver for Linux page 12 of 29

For earlier kernel versions than 2.6.13 you need entries in “/etc/pcmcia/config” like:
device “pcan”
class “none” module “pcan”

card “PCAN-PCCARD”
manfid 0x0377, 0x0001
bind “pcan”

With this entries you can use your configured hotplug system to load the driver when the
card is plugged in.

Also for kernels lower than 2.6.13 you can use the cardctl utility from the pcmcia-
package, especially “cardctl eject” and “cardctl insert” to prepare a card for ejection or to
notify a inserted card.

Please note that removing a card with still open channels is not recommended.

Customization of 'modules.conf' or 'modprobe.conf'

For kernel version 2.6.x the configuration file name has changed to 'modprobe.conf' file.
Both files are to find in „/etc“.

At the end of the „/etc/modules.conf“ file („modprobe.conf“) a marked addition is added
through the installation. The respective type and the eventually non-standard base
addresses and interrupt numbers are to be given there, if the driver have to support the
PCAN-ISA or PCAN-Dongle interfaces. (Have a look at the description about the manual
loading of the driver)

Note: As soon as there already is an entry with the word 'pcan' the current entry is not to
be changed. If you wish to have a new entry you have to delete the old one first. To do
that you have to use an editor as „root“ user.

Interface hardware type

To register non-hot pluggable devices permanently you have to use this settings:
type=type1,type2[,...]

where type* is “isa”, or “sp”, or “epp” depending on your interface hardware.

Example:
type=isa,sp

IO-port and interrupt settings

If you like to use non-standard settings for IO-ports or interrupt number assignments you
have to add:
io=io1,io2[,...] irq=irq1,irq2[,...]

where io* is the hexadecimal number of the corresponding IO-port and irq* is the decimal
number of the assigned interrupt line.

Examples:
io=0x300,0x378 irq=10,7

The standard assignments for ISA and PC/104 interfaces are (io/irq): 0x300/10, 0x320/5.

The standard assignments for Dongle in SP/EPP mode are (io/irq): 0x378/7, 0x278/5

PCAN-driver for Linux page 13 of 29

Initial bitrate

To prevent a wrong initial bitrate when loading the driver we added a driver load
parameter which sets the initial bitrate of the related interfaces. For example to set the
initial bitrate to 1 Mbit/sec the syntax is:
bitrate=0x0014

In order to make this setting persistent you have to modify /etc/modules.conf or
/etc/modprobe.conf (depending on your kernel version).

Note: Please consider that all interfaces handled with this driver get the same initial
bitrate. The corresponding (common) bitrate codes are:
#define CAN_BAUD_1M 0x0014 // 1 Mbit/s
#define CAN_BAUD_500K 0x001C // 500 kBit/s
#define CAN_BAUD_250K 0x011C // 250 kBit/s
#define CAN_BAUD_125K 0x031C // 125 kBit/s
#define CAN_BAUD_100K 0x432F // 100 kBit/s
#define CAN_BAUD_50K 0x472F // 50 kBit/s
#define CAN_BAUD_20K 0x532F // 20 kBit/s
#define CAN_BAUD_10K 0x672F // 10 kBit/s
#define CAN_BAUD_5K 0x7F7F // 5 kBit/s

Assign parameter (netdev only)

There are three choices to assign a network device name to CAN interfaces:
assign=peak
assign=device-node-name:network-device-name[, ...]
not set

With the special 'assign=peak' module load parameter you can assign the network device
names of the CAN channels corresponding to the assigned minor numbers, e.g.

network device name “can40” corresponds devices minor number 40.

A third option allows to assign individual network device names. To accomplish it please
add a string similar to this:
assign=pcan32:can1,pcan41:can2

Please note: With kernels 2.4.x you should use a plus (+) instead a comma (,) to separate
the entries.

If you omit this parameter the network device names are automatically assigned in
channel initialization order.

Installation test, use of test programs (chardev only)

Two test programs are attached for the initial test of the interfaces. For using the
programs please change to the directory „.../peak-linux-driver-x.y/test“.

Please invoke
./receivetest --help

You get following response:
receivetest Version “Release_20040412_a” (www.peak-system.com)
--------- Copyright (C) 2004 PEAK System-Technik GmbH ---------
receivetest comes with ABSOLUTELY NO WARRANTY. This is free
software and you are welcome to redistribute it under certain

PCAN-driver for Linux page 14 of 29

http://www.peak-system.com/

conditions. For details see attached COPYING file.

Receivetest – a small test program which receives and prints CAN messages.
Usage: receivetest{[-f=devicenode]|{[-t=type] [-p=port [-i=irq]]}}[-b=BTR0BTR1][-e]
options: -f – devicenode – path to devicefile, default=/dev/pcan0
-t – type of interface, e.g. ‘pci’, ‘sp’, ‘epp’, ‘isa’ or ‘usb’ (default: pci).
-p – port in hex notation if applicable, e.g. 0X378 (default: 1st port of type).
-i – irq in dec notation if applicable, e.g. 7 (default: irq of 1st port).
-b – BTR0BTR1 code in hex, e.g. 0X001C (default: 500 kbit).
-e – accept extended frames. (default: standard frames)
-? or --help – this help

receivetest: finished (0).

The default bit-rate settings for all CAN-interfaces is set to 500 kbit/sec. The bit rate can
be customized through the command line parameters.

For using a ISA or Dongle interface with the standard settings following detail is enough:
receivetest -t=isa or receivetest -t=sp or receivetest -t=epp

or
receivetest -f=/dev/pcan0

to get to the first PCAN-PCI-interface.

Every received telegram of the interface will be print out. Entering Ctrl-C cancels the
program.

The program „transmitest“ can be used to transmit data. Please invoke
./transmitest –help

You get following output similar to receivetest:
transmitest Version “Release_20040412_a” (www.peak-system.com)
--------- Copyright (C) 2004 PEAK System-Technik GmbH ---------
transmitest comes with ABSOLUTELY NO WARRANTY. This is free
software and you are welcome to redistribute it under certain
conditions. For details see attached COPYING file.

Transmitest – a small test program which sends CAN messages.
Usage: transmitest filename {[-f=devicenode]|{[-t=type][-p=port[-i=irq]]}} ...
options: filename – mandatory name of message description file.
-f – devicenode – path to devicefile, default=/dev/pcan0
-t – type of interface, e.g. ‘pci’, ‘sp’, ‘epp’ ,’isa’ or ‘usb’ (default: pci).
-p – port in hex notation if applicable, e.g. 0X378 (default: 1st port of type).
-i – irq in dec notation if applicable, e.g. 7 (default: irq of 1st port).
-b – BTR0BTR1 code in hex, e.g. 0X001C (default: 500 kbit).
-e – accept extended frames. (default: standard frames)
-? or --help – this help

transmitest: finished (0).

This program expects similar parameters as receivetest with the exception of a file name.
In the file with this name the program expects a list of telegram descriptions which are to
be send. Those telegrams will be send cyclic until the ending by pressing Ctrl-C. The
syntax of the description of the telegrams is:

Description of the first column of the telegram of the read/write interface.

PCAN-driver for Linux page 15 of 29

http://www.peak-system.com/

Description of the following columns of 'normal' and RTR-telegrams.

Description of the following columns for initializing strings.

For example:
a comment
a message, standard frame, id=0x123, 0 Data bytes
m s 0x123 0
a message, standard frame, id=0x123, 1 Data byte, Data
m s 0x123 1 0x11
a message, standard frame, id=0x123, 1 Data byte, Data
m s 0x123 2 0x11 0x22
a message, extended frame, id=0x123, 3 Data byte, Data
m e 0x123 3 0x11 0x22 0x33
a RTR, standard frame, id=0x123, 0 Data byte, comment
r s 0x123 0 # a comment
a RTR, extended frame, id=0x123, 0 Data byte, comment
r e 0x123 0 # a comment
initialize
i 0x1234 e

Most important chardev header files

Any sources of the driver, of the library and the test programs are fit in underneath the
„peak-linux-driver-x.y“ directory tree. Two files are to be mentioned especially:

The file „.../peak-linux-driver/driver/pcan.h“ describes the interface to the driver and
command constants. You have to include this file if you want to have direct access to the
driver with „open(), ioctl(), read(), close() etc.“.

The file „.../peak-linux-driver/lib/libpcan.h“ describes the interface to the dynamic linkable
library libpcan.so. You have to include this file if your application needs to use the
dynamic library.

Please note that libpcan.h is including the pcan.h file.

Manual installation of the chardev header-files

Please copy the header-files into the directory „/usr/include“ as “root” user as followed

PCAN-driver for Linux page 16 of 29

Tag / Column #1 Description
m Message string follows
r RTR-Message string follows
i Initialisation string follows (write only)
Comment follows (write only)

2
3
4

5..12
13
14
13

Column Description
s = Standard frame, e = Extended frame
Identifier (hex)
Length of telegram (dec)
Telegram bytes (hex)
Timestamp milli seconds (dec, read only)
Timestamp micro seconds (dec, read only)
Comment (write only)

Column Description
2 BTR0BTR1 Init data (hex, write only)
3 e = allow extended frames (write only)

and customize the access rights.
cp peak-linux-driver/driver/pcan.h /usr/include/pcan.h
chmod 644 /usr/include/pcan.h
cp peak-linux-driver/lib/libpcan.h /usr/include/libpcan.h
chmod 644 /usr/include/libpcan.h

Most important netdev header files

For application programs important header file “can.h” and other includes should be taken
from the Socket-CAN source. Appropriate Makefiles can be found e.g. at
socketcan/trunk/can-utils .

Compilation of the driver only

Use cases

In some cases of using the installed driver it doesn't fit to the configured operating
system. This could be following cases:

1. Your kernel sources are not to be found in the standard directory „/usr/src/linux“. You
still can compile with following invocations:
cd ~/peak-linux-driver-x.y/driver
make clean
make KERNEL_LOCATION=<path-to-my-kernel>

2. You don't need or don't want support for some interface types. Then you have to
compile the driver with disabled support for some interfaces. The makefile provides to
enable or disable partial compilation with this switches:
USB = USB_SUPPORT or NO_ USB_SUPPORT
PCI = PCI_SUPPORT or NO_ PCI_SUPPORT
DNG = DONGLE_SUPPORT or NO_ DONGLE_SUPPORT
ISA = ISA_SUPPORT or NO_ ISA_SUPPORT
PCC = PCCARD_SUPPORT or NO_PCCARD_SUPPORT
NET = NETDEV_SUPPORT or NO_NETDEV_SUPPORT

As default all interfaces are enabled. For example if you want to suppress PCAN-
Dongle and PCAN-ISA Interfaces you have to compile:
cd ~/peak-linux-driver-x.y/driver
make clean
make DNG=NO_DONGLE_SUPPORT ISA=NO_ISA_SUPPORT

As default the netdev driver is disabled. If you like to use the netdev driver please
compile with
NET=NETDEV_SUPPORT.

3. The following section only applies to kernel versions 2.4.x or lower: The driver is to be
installed on RedHat Linux. RedHat in contrast to SuSE as default uses the
„CONFIG_MODVERSIONS“ modifier to prohibit the installation of improper drivers. If
your operating system was generated with enabled „CONFIG_MODVERSIONS“ you
can see this easily by invoking „cat /proc/ksyms“. If there are cryptic number-letter
combinations at the end of the symbols your system was generated with
enabled„CONFIG_MODVERSIONS“.

A simple new compilation on your system is enough:
cd ~/peak-linux-driver-x.y/driver

PCAN-driver for Linux page 17 of 29

make clean
make

4. Your operating system doesn't support the PARPORT_SUBSYSTEM or you have a
parallel interface which is unknown to the operating system and you like to use a
PCAN-Dongle with this interface.

Here you have to compile with the „PAR=NO_PARPORT_SUBSYSTEM“ switch:
cd ~/peak-linux-driver-x.y/driver
make clean
make PAR=NO_PARPORT_SUBSYSTEM

5. You get runtime errors and want to see more information for diagnosis at
„/var/log/messages“. Here you have to translate with the „DBG=DEBUG“ switch:

cd ~/peak-linux-driver-x.y/driver
make clean
make DBG=DEBUG

Combinations of these switches are also possible.

Support for Cross-Compilation

The driver, its library and the test programs sometimes are used on other systems than
the development system. The process of generating the binary driver for another target is
called Cross-Compilation. Partially the driver and its helper programs are supporting
Cross-Compilation. Therefore the driver has to be translated with the option.
make KERNEL_LOCATION=<path-to-my-kernel>

Whether the driver can be compiled for every possible target system and is working there
can’t be guaranteed because of so many different architectures.

The installation of the driver and the library on an other target than the host system can’t
be supported through the given installation scripts.

We are glad about hints how to improve the Cross-Compilation support. Especially we
are looking for successful ports of the driver to document the knowledge for other
engineers.

PCAN-driver for Linux page 18 of 29

Features of the shared library 'libpcan.so' (chardev only)

The „libpcan.so“ library is providing an easier interface for using the features of the
PCAN-drivers. The library interface is similar to the one from MS-Windows and make the
porting of applications easier. There are also some calls which adapt better to the
specifics of Linux. They are marked with a 'LINUX_..' as prefix. (Example: HANDLE
LINUX_CAN_Open(char *szDeviceName, int nFlags);)

Picture 1. calling hierarchy

The interface of the library is described within the C/C++-header file „libpcan.h“. Please
note that „libpcan.h“ includes the „pcan.h“ file.

The source code is under LGPL so it is for utilizing within proprietary software without any
exceptions.

Manual installation of the chardev shared library

Please change to the directory „../peak-linux-driver-x.y/lib“. Login as „root“ user and
invoke:
cp libpcan.so.0.1 /usr/lib/libpcan.so.0.1
ln -sf /usr/lib/libpcan.so.0.1 /usr/lib/libpcan.so.0
ln -sf /usr/lib/libpcan.so.0 /usr/lib/libpcan.so

This process is only necessary if you install this program for the first time or if you want to
update the library. To use the test programs the library has to be installed.

Note: The version minor number of the library can change as a result of minor or major
improvements.

Message Filters (chardev only)

Up from driver version 6.0 message filters are supported for the chardev device. With the
netdev device message filters are part of Socket-CAN.

To maintain backward compatibility, after first open of a path to a device no message filter

PCAN-driver for Linux page 19 of 29

 Application

 Shared library

 Driver

is set. With the first time a message filter is set or reset the message filter chain will be
activated.

It is possible to set more than one filter condition in a message chain for each path. After
a message is received the filter chain is walked trough to check for a pass condition. If no
pass condition is found the message is rejected.

Error handling

The CAN error handling for the chardev driver has changed from version 5.x to version
6.x of the driver. Now the handling is more compatible to the MS-DOS implementation.

If a CAN error occurs a status message is enqueued into the channels receive queue. A
status message is marked with MSGTYPE_STATUS set in the MSGTYPE field of the
TPCANMsg structure.

Depending on the kind of error detailed CAN_ERR_... information is set in the DATA[3]
field of the same structure.

Error handling with netdev devices is similar, however the error information is fit into the
can_frame structure. For details please look into the Socket-CAN documentation.

Socket-CAN introduction and basic installation (netdev only)

The Socket-CAN package is an implementation of CAN protocols (Controller Area
Network) for Linux. CAN is a networking technology which has wide-spread use in
automation, embedded devices, and automotive fields. While there have been other CAN
implementations for Linux based on character devices, Socket-CAN uses the Berkeley
socket API, the Linux network stack and implements the CAN device drivers as network
interfaces. The CAN socket API has been designed as similar as possible to the TCP/IP
protocols to allow programmers, familiar with network programming, to easily learn how to
use CAN sockets. (Taken from the README file from the Socket-CAN package).

The development on Socket-CAN started end of 2002 at Volkswagen AG to have a
common CAN-IT-interface for HMI- and Car2Car prototypes. Nowadays Socket-CAN is
maintained by a group of developers at http://socketcan.berlios.de/. One of the Socket-
CAN maintainers, Oliver Hartkopp, did most of the netdev integration into the plain pcan
driver.

To use Socket-CAN you first have to fetch the Socket-CAN sources and compile and load
them. To fetch the sources you might invoke:
svn co http://svn.berlios.de/svnroot/repos/socketcan/trunk /where/it/should/load

Then please follow the instructions given in the README file to compile and load Socket-
CAN. With Socket-CAN you get a driver for “virtual CAN channels”. They are called
vcan0, vcan1 and so on.

To get the Socket-CAN loaded you can invoke as root-user:
modprobe can
modprobe can-raw
modprobe can-bcm
modprobe vcan

to load the necessary modules. You might look into your kernel-log (e.g.
/var/log/messages) to see the module banners printed at load time.

PCAN-driver for Linux page 20 of 29

http://svn.berlios.de/svnroot/repos/socketcan/trunk
http://developer.berlios.de/

After loading you’ll get this lsmod output
lsmod | grep can
can_bcm 16392 0
can_raw 9856 0
can 36072 2 can_bcm,can_raw
vcan 4360 0

Now you only have to bring up your new network nodes. For example please invoke:
ifconfig vcan0 up

This starts the network device vcan0. To see if the network device is installed please call:
ifconfig
vcan0 Protokoll:UNSPEC Hardware Adresse 00-00-00-00-00-00-00-00-00-00-00-00-...
RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 ...
carrier:0 collisions:0 Sendewarteschlangenlänge:1000 RX bytes:0 (0.0 b) TX bytes:0 (0.0 b)

eth0 ...

lo ...

With this basic installation you can test your Socket-CAN setup. To test it you must have
the Socket-CAN can-utilities compiled. In a first console invoke:
./cangen vcan0

If you invoke in a second console “candump vcan0” then you’ll get the generated (and
loopbacked) CAN messages from your first invocation:
./candump vcan0
vcan0 567 [6] 69 98 3C 64 73 48
vcan0 451 [8] 4A 94 E8 2A EC 58 55 62
vcan0 729 [8] BA 58 1B 3D AB D7 7E 50
vcan0 1F2 [8] E3 A9 E2 79 46 E1 45 75

This output shows that your basic Socket-CAN installation was successful. Next you have
to install the pcan netdev driver.

Note: Currently most of the Socket-CAN utilities can only be used as root-user. Due to the
standard NET-CAPABILITIES the access to the RAW-sockets and to the BCM-sockets
are only granted to the user root (analogue to the promiscuous mode on ethernet
devices). But you may define CONFIG_CAN_RAW_USER and/or
CONFIG_CAN_BCM_USER in the Kconfig (when integrated into the Kernel) to override
this.

You may also try to put

#define CONFIG_CAN_RAW_USER
#define CONFIG_CAN_BCM_USER

into your local /usr/src/linux/include/linux/autoconf.h before compiling the Socket-CAN
source code or change the files raw.c and bcm.c after downloading Socket-CAN.

This is a disadvantage of the 'external' module compilation.

For additional support on Socket-CAN you may also check the mailing-lists at
http://developer.berlios.de/projects/socketcan/ :

http://developer.berlios.de/mail/?group_id=6475

PCAN-driver for Linux page 21 of 29

Realtime support with Xenomai

Since Release ‘release_20061029_*’ realtime support for the Xenomai realtime
environment (http://www.xenomai.org/) was merged from a previous rt-branch into the
main branch. Most of the work was done by Laurent Bessard and Edouard Tisserant.

The Xenomai project has been launched in August 2001. It has merged in 2003 with the
RTAI project [http://www.gna.org/projects/rtai/] to produce an industrial-grade real-time
Free Software platform for GNU/Linux called RTAI/fusion, on top of Xenomai’s abstract
RTOS core.

Installation

First of all, in order to install pcan-rt driver, a Xenomai realtime environment must be
installed on your workstation. Download the Xenomai source code from the Xenomai
website and install it by following the installation manual provided. The Linux kernel of
your workstation must be patched for using Adeos (patches for a lot of architectures are
included in the source code).

Before using Xenomai, the list of dynamic libraries of your workstation must be updated. If
not, the driver compilation will abort. For that, you can use ‘ldconfig’, ensuring that the
path to Xenomai libraries have been added to ‘/etc/ld.so.conf’ file.

Compilation environment

To compile the pcan realtime driver, you must provide in the make command the option
RT=XENOMAI. By default, the pcan driver will be compiled for non-realtime environment.

Because USB and PCCARD are still not supported on pcan realtime driver, it is highly
recommended to not compile pcan realtime driver with USB_SUPPORT or
PCCARD_SUPPORT flags.

An example of command for compiling pcan realtime driver:
cd ~/peak-linux-driver/driver
make clean
make RT=XENOMAI

Runtime environment

You can load pcan realtime driver module as usual, there are no changes compared to
the standard loading procedure.

The pcan API is the same in realtime and non-realtime, so you can open, close, read from
or write to your pcan device like usual. But be careful, reading and writing must be made
in a realtime task to be really effective. For an example of how to use Xenomai for
creating and using a realtime task, please refer to the examples (transmitest and
receivetest) located in the ‘test’ folder.

For compiling your program, Xenomai libraries path and flags must be included in your
‘Makefile’. They can’t be obtained by using the ‘xeno-config’ script provided with Xenomai.
You can have an example of how using ‘xeno-config’ in the ‘Makefile’ file located in the
‘test’ folder.

Troubleshooting

Warning: On an old station, after compiling the kernel patched for Adeos, a problem that
makes the kernel couldn’t load can appear. To solve this problem, you can added
‘lapic=1’ to the kernel command line parameters in ‘grub.conf’ or ‘lilo.conf’ file, depending
of your bootloader.

PCAN-driver for Linux page 22 of 29

http://www.xenomai.org/

If your kernel still crashes at start, a solution for finding what is blocking your kernel is to
compile it with Xenomai support in module and try to insert it after kernel was loaded. It
will then indicate in the log messages what the problem is.

The most common mistake when using a realtime task is trying to print some text in the
user terminal with ‘printf’ command. It is highly recommended to avoid to do that. In most
cases, it will result in a kernel crash.

FAQ

Q. The driver for my PCAN-ISA card is not being installed. What's wrong?

A. One possibility is that the SJA-1000 chip on the card is setting back while checking the
PeliCAN-mode. If the card with a PLD that has got a red point and the jumper JP11 is set
„on“ this may be the reason. Remedy: To set the jumper to „off“.

Q. My PCAN-ISA, CAN-PC/104 or PCAN-Dongle doesn't receive any data though I can
send. What's wrong?

A. A possible reason is that a wrong interrupt is configured for the device. Then single
telegrams can be send however none can be received. Not only the wrong assertion of
the interrupt number but often the missing release of the interrupt in BIOS („legacy ISA“)
for the PCAN-ISA card can be the reason. (See also (1*))

Q. My PCAN-Dongle is being rejected while using it even if the installation was
successful. What's wrong?

A. Normally the reason is a not assigned interrupt for the „parport_pc“ while using it
together with the PARPORT_SUBSYSTEM (1*).

Q. What possibilities do I have to diagnose if I have problems?

A. Linux has a variety of choices. First it's useful to look at recent messages with:
“tail -f /var/log/messages“

If the driver is loaded you can see (as root) with
„/sbin/lsmod | grep pcan“

More informations about the parameter of the driver can be asked with.
„/sbin/modinfo pcan“

Closer information about assignment of major- and minor-numbers and about the use of
resources can be queried with

“cat /proc/pcan“

Information about assignment of resources can be queried with
“cat /proc/interrupts“
“cat /proc/ioports“
“cat /proc/iomem“
„cat /proc/pci“ or „cat /proc/bus/pci/devices“ depending on the kernel version.
„cat /proc/bus/usb/devices“

PCAN-driver for Linux page 23 of 29

Please note that the interrupts of the hardware aren't registered until its use.

To diagnose USB there are also programs with a graphical user interface like e.g.
„USBView“.

With garbled installations sometimes paths for lation of the driver are set wrong. That's
why while translating the driver a message like this appears:

*** Host machine kernel version=2.4.18-4GB, Driver kernel version=2.6.5, \
 Path to kernel sources=/mnt/usr/src/linux, use KBUILD=yes

With this message it is possible to compare if the driver is really compiled for the used
kernel. The „KBUILD“ mechanism is used from kernel 2.6.x on.

Q. How do I interpret the output of “cat /proc/pcan“ ?

A. The second line gives information about the release of the driver. In the third line the
number of the found CAN-channels and the assigned major-number are shown. From line
four on the characteristics of the each CAN-channel are described.

The first column shows the minor-number assignment of the channel, the second column
shows the type of the channel, the third column shows the network device assigment i
available. The fourth column shows the current BTR0BTR1 (bitrate) setting, the next 2
columns show the assignment to base addresses (ports) and interrupt-numbers. The
following four columns count the number of processed read-, write-, interrupt- and errors
transactions. The last column shows the last occurred error status of the channel. The
status is a bit-field with an interpretation like this table:

Both columns „base“ and „irq“ are misused with USB channel types. „base“ is showing the
serial number of the module and „irq“ the programmed device number of the module. The
column „irq“ in case of type USB counts the number of received or sent USB-packages..

Q. What happens if I plug out the interface while using PCAN-USB?

A. First of all your programs will stall and a re-plug-in of the PCAN-USB doesn’t change
anything. First you have to stop and after plugging-in of the interface you can invoke your
programs again. It’s not guaranteed that the same minor number as the previous PCAN-
USB minor-number is allocated. Minor-number assignment depends on the order of plug-
ins of PCAN-USB devices.

PCAN-driver for Linux page 24 of 29

Bit
0
1
2
3 BUS passive
4
5
6
7

14

Description
Chip-send-buffer full

Chip-receive-buffer overrun
BUS warning

BUS Off
Receive-buffer is empty
Receive-buffer overrun

Send-buffer is full
Illegal parameter

Q. How can I find out what minor-number the PCAN-USB is assigned to?

A. With help of the individual pre-programmed „device-number“, which can be
experienced with help of the „/proc/pcan“ interface, a relationship to a special physical
connection can be made.

Q. I want to open my PCAN-USB device however I get an error message. What’s wrong?

A. There is more than one possibility: 1.) The appropriate device is not registered as
„/dev/pcan...“. 2.) The appropriate device is not plugged in.

Q. The compilation on my system doesn’t work. What can be wrong?

A. The most common reason are not installed Linux kernel sources. Often sources of
another kernel than the one installed are used. Sometimes both files

● „/boot/vmlinuz.autoconf.h“ and
● „/boot/vmlinuz.version.h“

of the distribution are not linked to the files they are assigned to.

● „/lib/modules/’uname-r’/build/include/linux/autoconf.h“ and
● „/lib/modules/’uname -r’/build/include/linux/version.h“

Q. The transmission performance of CAN-messages is low, if I send a telegram with help
of the write-interface out of a script. What is the problem?

A. Every line in a script opens the path to a device and immediately closes this path
again. This opening and closing takes time. The transmission performance can be
improved by letting another path open. For example:

cat /dev/pcan32 >/dev/null &
echo „m s 0x123 2 0x11 0x12“ > /dev/pcan32
echo „m s 0x123 2 0x11 0x12“ > /dev/pcan32

Q. I got a lot of error messages when compiling the driver for a kernel 2.6.x system.
What’s wrong?

A. To compile for kernel 2.6 target system you need to have a pre-configured kernel. To
accomplish this you need to install the target kernel sources. Then do
cd /usr/src/linux # for example
su # you need to be root
make cloneconfig # create a configuration suitable for your running kernel
make scripts # create the necessary scripts

That’s all. Now you can – as ordinary user – compile your driver.

Q. While compiling the driver following message appears:
*** “Can’t find /usr/src/linux-2.4.24.SuSE/include/linux/version.h !”. End.

What’s the problem?

A. Within the driver makefile up from version 3.3 the target kernel version is not being
won out of the interpretation of the command ‘uname -r’, but extracted out of contents of
the file „$(KERNEL_LOCATION)/include/linux/include/version.h“. (If there wasn’t any

PCAN-driver for Linux page 25 of 29

special „KERNEL_LOCATION“ given at the command line of „make“
„KERNEL_LOCATION=/usr/src/linux“ is being used as default.) While translating the
kernel sources the file „version.h“ is generated. Normally this message has its cause in
not translated kernel sources. Until kernels 2.4.x it was enough if the distribution had
installed this file. From kernel 2.6.x on it is necessary that the kernel sources for the
target system are configured and translated completely. Then the file „version.h“ is being
created.

Q. I like to have interrupt sharing with PCAN-ISA or PCAN-PC/104

A. No problem since version 3.30 of the driver. But you should be aware that interrupt
sharing with ISA BUS is only possible with devices which are supported from the same
driver, e.g. The pcan driver. For example it is not possible to share a serial device with a
pcan device but two pcan devices can share the same interrupt level.

Q. I have problems to compile or load the driver. What can I do?

A. First, read this manual to see if you got a well known problem. Second, if it is a
compiling problem then redirect your compiler output into a file and send the contents to
linux@peak-system.com. If it is a loading problem do the same for the output of your
loading procedure. With loading or runtime problems it is very helpful to run a driver with
debug mode enabled. Then please attach the relevant parts of “/var/log/messages”.

Q. I got other questions or problems with the driver.

A. Please consult linux@peak-system.com.

Q. I am enthusiastic about the driver or the documentation and want to contribute
something to make it better. Who do I have to consult?

A. Please also contribute linux@peak-system.com. Peak and the authors are happy about
every positive response.

Appendix

(1*) = The „Parport Subsystem“ has to be configured to use a interrupt. Therefore
following lines have to be entered into the file „/etc/modules.conf“ or „/etc/modprobe.conf“
depending on your kernel version:
alias parport_lowlevel parport_pc
options parport_pc io=0x378 irq=7

Normally „irq=none“ stands in the „options“-line. The assigned interrupt number must
match the assigned interrupt number of the device. Those works can only be done as
'root“. If the „Parport Subsystem“ is already installed it can be removed with:
rmmod lp
rmmod pcan
rmmod parport_pc
rmmod parport

(2*) = You are not forced to use the „Parport Subsystem“. Then the alternately use of the

PCAN-driver for Linux page 26 of 29

mailto:linux@peak-system.com
mailto:linux@peak-system.com
mailto:linux@peak-system.com

parallel port through PCAN-Dongle and e.g. a printer is not possible any more. For it the
driver has to be translated with the PAR=NO_PARPORT_SUBSYSTEM option. Then the
previous detail of „modprobe parport“ is not necessary while installing.

(3*) = For each type of hardware 8 device-interfaces are reserved. For PCI those are the
minor-numbers 0...7, for ISA 8...15, for Dongle in SP-mode 16...23 and for Dongle in EPP-
mode 24...31, for PCAN-USB 32..39, for PCAN-PCCard 40..48. Therefore the device files
have a name e.g.:

● /dev/pcan0for the first PCI-channel
● /dev/pcan8 for the first ISA-channel
● /dev/pcan16 for the first SP-channel
● /dev/pcan24 for the first EPP-channel
● /dev/pcan32 for the first USB-channel (9*)
● /dev/pcan40 for the first PC Card channel

The invocation of „pcan_make_devices n“ however only creates n device files of each
type. According to your demands „n“ can be any number from 1...8.

(4*) = In some cases the dynamic assignment of „major“- device numbers are unwelcome.
However this can be changed in the driver sources (file „pcan_main.h“, constant
„PCAN_MAJOR“). Afterwards the driver has to be translated and installed again. The best
is to use the number „91“. This already is intended for CAN-devices. Please note that
conflicts to other installed CAN-drivers can be possible.

(5*) = The „read“- and „write“-interface of the driver print out ASCII formatted data or
accept ASCII formatted data as input. The format of the telegrams for „read“ and „write“ is
defined identically, so that a redirection of data is possible:
cat /dev/pcan0 > /dev/pcan8

The format of the data is like the previously mentioned description of the telegrams.
Additionally to the description of the telegrams the „read“-output supplies a time stamp in
milliseconds and microseconds. If there is a redirection like above the time stamp is being
ignored.

The „write“-output also accepts details about initializing:
echo „i 0x1234 e“ > /dev/pcan8

The first parameter pinpoints the initialization, the second parameter names an input
value for both BTR0/BTR1 registers of the SJA1000 chip. The optional third parameter
„e“, enables the accept ion of extended frames.

Naturally a faster „ioctl()“-interface is also defined.

(6*) = CAN hardware is only accepted based on Philips chip SJA1000. PCAN-ISA or -PCI
hardware is immediately verified during installation. In contrast to that the PCAN -Dongle
hardware is not verified until an „open()“ call. That's the reason why no error is reported if
a parallel port without plugged-in PCAN-Dongle is recognized .

(7*) = Sometimes some hardware/software combinations don't recognize the USB-Dongle

PCAN-driver for Linux page 27 of 29

after a new start of the system. The red light-emitting diode doesn't shine at the PCAN-
USB if that's the case.

(8*) = If lots of faults are generated with enabled USB support while compiling, then a
faulty Linux kernel configuration may be the cause. During configuration of the Linux
kernel the USB-support has to be enabled.

(9*) = From kernel version 2.6 on the behaviour during assignment of the „minor“-numbers
is being changed through the kernel parameter „CONFIG_USB_DYNAMIC_MINORS“.
When „CONFIG_USB_DYNAMIC_MINORS“ is set, the first free „minor“-number is
assigned to from 0 on. Mandrake distributions uses this configuration.

Historical parts

devfs

Up from Release_20030622_x the device file system is being supported optionally. From
kernel version 2.6.x the kernel developers depreciate the use of devfs so for the time
being the driver is not supporting this. Up from release release_20060501_a (version 4.0)
the parts for supporting devfs are removed from the driver.

Using the devfs it's not necessary to create device files manually any more. This is taken
over by the kernel in cooperation with the driver and the daemon devfsd. The device file
system has to be enabled within the kernel.

Compiling for devfs-file system support. If you translate the sources for a system with
devfs-support (CONFIG_DEVFS_FS = y) this will be considered automatically:

cd ~/peak-linux-driver/driver
make clean
make DEVFS=DEFS_SUPPORT

Q. I compiled for device file system support. Though it’s not working.

A. Is your devfsd – the „device file system daemon“ – active? Please check that.

Compilation for kernel greater than 2.5.x

Q. While translating kernel 2.6.x following warning appears:
*** Warning: Overriding SUBDIRS on the command line can cause
*** inconsistencies

Is something not right?

A. I am afraid that the discussion within the kernel-developer community about the right
way of translating external modules hasn’t found an end until this release. The current
way generates this warning and at worst translates all of the modules again. Though
there are approaches that the generation of external modules like pcan.ko is getting
easier. This message can be ignored.

PCAN-driver for Linux page 28 of 29

Obfuscation

Q. The source code module „pcan_usb_kernel.c“ only contains cryptic letters. Is the file
destroyed?

A. No, the contents of the files are obfuscated to save intellectual property. Though it’s
still a translatable source code. This feature does only apply for releases earlier than
20061029.

Q. During installation of the driver with USB-support I get following message: „Warning:
loading pcan.o will taint the kernel: non-GPL license – Proprietary“. What’s the meaning
of this message?

A. This message points out that the driver for the PCAN-USB module is not released
under the GPL license. The use of the driver as a module within Linux though is legal.

Epilogue

This document was made with help of OpenOffice.org (http://www.openoffice.org).
Thanks to the community for such an excellent tool.

Linux, SuSE, RedHat, Mandrake, Windows are trademarks of the appropriate owners.

PCAN-driver for Linux page 29 of 29

http://www.openoffice.org/

	PCAN-driver for Linux
	History of the document

	table of documents
	Features of the 'pcan.o' or 'pcan.ko' driver
	Special features of the “chardev driver”
	Special features of the “netdev driver”

	Preluding notes
	Manual installation
	Manual file unpacking
	Prerequisites for compilation of the sources
	Manual compilation and installation

	Installation with source RPM
	Loading the driver
	Driver loading specifics for chardev
	Driver loading specifics for netdev

	Interface Specifics
	Specifics with the driver installation for PCAN-USB
	Specifics with the driver installation for PCAN-PC Card

	Customization of 'modules.conf' or 'modprobe.conf'
	Interface hardware type
	IO-port and interrupt settings
	Initial bitrate
	Assign parameter (netdev only)

	Installation test, use of test programs (chardev only)
	Most important chardev header files
	Manual installation of the chardev header-files

	Most important netdev header files
	Compilation of the driver only
	Use cases
	Support for Cross-Compilation

	Features of the shared library 'libpcan.so' (chardev only)
	Manual installation of the chardev shared library
	Message Filters (chardev only)
	Error handling
	Socket-CAN introduction and basic installation (netdev only)
	Realtime support with Xenomai
	Installation
	Compilation environment
	Runtime environment
	Troubleshooting

	FAQ
	Appendix
	Historical parts
	devfs
	Compilation for kernel greater than 2.5.x
	Obfuscation

	Epilogue

